

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Combustion engines			
Course			
Field of study		Year/Semester	
Construction and Exploi	itation of Means of Transport	3/5	
Area of study (specializa	ation)	Profile of study	
-		general academic	
Level of study		Course offered in	
First-cycle studies		polish	
Form of study		Requirements	
full-time		compulsory	
Number of hours			
Lecture	Laboratory classes	other (e.g. online)	
15	15	0	
Tutorials	Projects/seminars	1	
0	0		
Number of credit point	S		
3			
Lecturers			
Responsible for the course/lecturer:		Responsible for the course/lecturer:	
DEng. Łukasz Rymaniak		d	
email: lukasz.rymaniak@	@put.poznan.pl		
tel. +48 61 665 2243			
Faculty of Civil and Tran	sport Engineering		
Piotrowo 3, 60-965 Poz	nań, Poland		
Prerequisites			
Knowledge:			

In the basic scope, it concerns the operation of internal combustion engines.

Basic in chemistry and physics from high school.

In terms of the main elements of the drive systems.

Skills:

Logical thinking, learning comprehension, using textbooks and searching for information from scientific publications (including the ability to search online databases).

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Social competence:

Awareness of the need to acquire knowledge and use it in various fields of technical and natural sciences.

Course objective

The aim of the course is to get acquainted with issues related to internal combustion engines in the field of: history, theoretical basis, construction, thermodynamics, research, emissivity, modern solutions and their application: road and off-road vehicles, aviation, shipbuilding.

Course-related learning outcomes

Knowledge

The student has a basic knowledge in the basics of machine design and the theory of machines and mechanisms, including mechanical vibration.

The student has a basic knowledge of the technical mechanics of fluids, ie ideal liquids and gases, Newtonian and non-Newtonian viscous liquids, theory of thermal-flow machines.

The student has an extended basic knowledge necessary to understand specialist subjects and specialist knowledge about the construction, construction methods, manufacturing and operation of a selected group of working, transport, thermal and flow machines covered by the Faculty's specialization profile.

The student has an elementary knowledge of the impact of machines and technology on the natural environment and global energy balances.

Skills

Student is able to obtain information from literature, the Internet, databases and other sources. Can integrate the obtained information, interpret and draw conclusions from it, and create and justify opinions.

Student is able to competently advise on the selection of a machine for a given application in the industry covered by a selected specialty, based on the acquired knowledge about a given group of machines.

Student is able to carry out elementary technical calculations in the field of fluid mechanics and thermodynamics, such as heat and mass balances, pressure losses in pipelines, select parameters of blowers and fans for ventilation and transport systems, and calculate thermodynamic waveforms in thermal machines.

Student is able to create a system diagram, select elements and perform basic calculations using readymade calculation packages of mechanical, hydrostatic, electric or hybrid machine drive system.

Student is able to use the experience gained in an environment dealing professionally with engineering activities related to the maintenance of devices, facilities and systems typical for the field of study.

Student is able to interact with other people as part of team work (also of an interdisciplinary nature).

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Social competences

The student is ready to critically evaluate the knowledge possessed and the content received.

The student is ready to recognize the importance of knowledge in solving cognitive and practical problems and to consult experts in case of difficulties in solving the problem on their own.

The student is ready to fulfill social obligations and co-organize activities for the benefit of the social environment.

The student is ready to perform responsible professional roles, including: observing the rules of professional ethics and demanding it from others, caring for the achievements and traditions of the profession.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Assessment on the basis of a written exam during the examination session and completed laboratory classes (reports + tests).

Programme content

The following issues will be presented in the program content:

-Introduction: presentation of a steam engine and a combustion engine, the principle of operation of a two-stroke and four-stroke engine, basic elements, types, application, a brief historical overview.

-Construction of the internal combustion engine: main components, power systems, supercharging, construction problems.

-The theory of the internal combustion engine: theoretical and comparative cycles, indicator charts, definitions of basic work indicators, Sankey diagram.

-Tests of internal combustion engines: construction of an engine dynamometer, dynamic dynamometer, engine characteristics, RDE tests.

-Emission of pollutants from internal combustion engines: emission sources, characteristics of the main harmful compounds, combustion reaction, dependence of operating parameters on emissions.

-Modern solutions used in internal combustion engines: directions of development of power systems, EGR, downsizing, rightsizing, downrating, variable valve timing, electric compressors, Atkinson cycle, Miler cycle, presentation of the design of selected modern internal combustion engines.

-High power combustion engines and aircraft structures.

-Application of internal combustion engines on selected examples.

Teaching methods

1. Lecture with multimedia presentation

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Laboratories - problem solving

Bibliography

Basic

1. Serdecki W. (red.): Badania silników spalinowych - Laboratorium (Combustion engine research - Laboratory). WPP, Poznan, 2012 or later releases.

2. Wajand Jan A., Wajand Jan T.: Tłokowe silniki spalinowe średnio- i szybkoobrotowe (Medium and high speed reciprocating internal combustion engines). WNT, Warsaw, 2005.

3. Niewiarowski K.: Tłokowe silniki spalinowe (Reciprocating internal combustion engines). WKiŁ, Warsaw, 1983.

4. Merkisz J.: Ekologiczne problemy silników spalinowych (tom I i tom II) (Ecological problems of internal combustion engines (volume I and volume II)). WPP, Poznań, 1998.

Additional

1. Engine manufacturer materials, conference and industry materials: Combustion Engines, MTZ, SAE.

Breakdown of average student's workload

	Hours	ECTS
Total workload	80	3,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for	50	2,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate